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Abstract

In CUDA accelerated raytracing implementation, when threads are called recursively
to carry ray-surface intersection and shading functions, stack overflow occurs due to the
limited shared memory of the GPU. This results in low quality rendered images. This
paper addresses this issue by converting the recursive functions into iterative functions
with explicitly defined stack depth. Redundant ray-surface intersection restricts the
raytracing implementation from achieving real time rendering. This paper handles this
issue by deploying Binary Volume Hierarchy (BVH) acceleration structure.

1 Introduction

Even though the modern Graphics Processing Units (GPUs) facilitates general programming
computations in parallel manner, the paramount requirement which resulted in devising
these GPUs was to render imageries for computer display. Rendering is the process of
synthesizing a 2D image for a computer display from a 3D scene. It is the most popular
form of human-computer interface and will undoubtedly continue to be so in the foreseeable
future. The two prominent rendering methods are rasterization and raytracing. The first

ever application that ran on GPUs was rasterization.
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Figure 1: Rasterization Pipeline [11]



1.1 Rasterization

Rasterization is the popularly available general purpose rendering technique so far [3].

In rasterization, primitive’s vertices are identified first and their respective encapsulated
area is rasterized. Then using the fragment shader, the colour of the pixels are determined.
When multiple primitives are found within the scene, the primitive closer to the virtual
screen is rendered with high priority over the primitives further away from the virtual
screen using the z-depth buffer

display the closest
point (Z2-buffer)

Figure 2: Z-buffer Calculation

Rasterization is the dominant rendering technique so far [3]. Most optical rendering
effects, such as shadow, reflection, and refraction, can, however, only be produced by simul-
taneously considering multiple primitives [41]. By providing a natural way to synthesize
visual effects and indirect lighting, ray tracing is the alternative superior mechanism for
photo-realistic rendering [17]. In high-end graphics systems such as movie special effects,
ray tracing-based rendering engines have been commonly used [9][12].

1.2 Raytracing

Raytracing is based on an emulation of the fundamental theory of vision. An object is
observed by an observer (e.g., a human being or a camera) when it reflects the rays emitted
from a light source to our eye. This procedure is done in reverse direction in raytracing so
that the rays that do not reach our eyes do not need to be considered. As highlighted in
Figure 3, the principle is to mimic the method of emitting rays from the eye toward pixels
on the display screen. When a ray intersects an object in the 3D scene, the coloring of
the corresponding pixel is determined by the illumination and the material at the specified
intersection point.

Rasterization is less computation intensive and can attain interactive rendering rates
when compared to ray tracing. On the other hand, ray tracing is superior in photo realistic
quality but high computation intensive. This difference in photo realistic quality of images
rendered using rasterization engine and raytracing engine developed for this project can be
observed in Figure 4.
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Figure 3: Raytracing [11]

The detailed clay material definition of the raytraced image showcases the superior
photorealistic quality than the general plastic like rasterized image. Therefore achieving
real time rendering using raytracing is the next big thing in human-computer interactive
visualization. In this literature review acceleration techniques that are implemented to
achieve real time interactive raytracing rendering using CUDA enabled GPUs are compared.
The Three previously published techniques that incorporate ray tracing with spatial data
structures on a GPU are contrasted in this literature review. There are uniform grids,
kd-trees, and bounding volume hierarchies. While the algorithms were successfully mapped
to a GPU, their performance on a current programmable GPU architecture has not been
closely compared

2 Literature Review

2.1 Raytracing

For over four decades, research has been performed on ray tracing. Appel [5] first suggested
the ray tracing algorithm. Since it just shoots rays from the eye and then scans the in-
tersection, the earliest iteration was designated as the ray casting algorithm. Clearly, it
only permitted the display of an approximate picture of the scene. To solve the visibil-
ity problem, this technique is widely applied. A ray-tracing algorithm was introduced by
Whitted [53] to implement more complex illumination effects. A primary ray may emit
so-called secondary rays, including reflection, refraction, and shadow rays, when a primitive
is hit by that primary ray in the scene. In a recursive way, those rays can then be processed.

For real-time applications, the Whitted algorithm [53] is the prominent ray tracing
algorithm. There are many implementations of GPU ray traversal in earlier works. Purcell
et al. [43] explained how a GPU ray tracing pipeline can be applied over a paradigm of
stream programming. As an acceleration framework, they used a Uniform Grid, expanding
their ray tracer into stream programming.
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Figure 4: Comparison of the Rendered Image Quality of Rasterization Vs Raytracing

2.2 Acceleration Structures

CUDA enabled parallel implementation of raytracing mainly suffers from redundant ray-
surface intersection. Acceleration structures are used to overcome this issue. Here scene
objects are grouped into bins using respective algorithms and ray-surface intersection is
checked for that bin first. If the ray doesn’t hit the bin, then the ray-surface intersection
for the objects found within the group can be skipped. In this way redundant ray-surface
intersections can be reduced. The advancement in the construction and traversal of accel-
eration structure is the utmost factor which advances the computation intensive ray tracing
rendering towards real time.

Acceleration structures are primarily categorised into spatial subdivision structure and
object subdivision structure. And based on the level of implementation it’s both these
structures again categorised into flat and hierarchical as shown in 5 and 6.

The design of acceleration systems is usually done for static and offline rendering appli-
cations by an instruction processor instead of ray tracing acceleration hardware [46][45][39].
However, a strong need for online development and updating of the acceleration structure is
demanded by the growing applications of rendering dynamic scenes. Recent breakthroughs
on totally data-parallel construction algorithms also make it possible to design effective con-
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Figure 5: Spatial Subdivision Acceleration Structures

Flat: Bounding Volume Hierarchical: BVH

Figure 6: Object Subdivision Acceleration Structures

struction hardware [27][33]. Vaidyanathan et al. [50] performed a comprehensive analysis
on the ray-tracing accuracy criterion and suggested a reduced accuracy approach that can
be incorporated into current GPUs. Proposed ray tracer by Li et al. [32] implements an
algorithm of highly efficient, completely parallel construction that applies to both Kd-tree
and BVH as well as a leading-edge ray traversal process.

2.3 Uniform Grid

It’s a flat spatial subdivision acceleration structure. Here a spatial point lies in a single
node whereas an object might lie in multiple nodes.

The first Uniform Grid ray traversal algorithm was introduced by Fujimoto and Iwata[15]
known as the 3D Digital Differential Analyser (3D-DDA) is an extension of Bresenham’s
algorithm which is frequently used for line rasterization. However, they introduced the
3D-DDA for traversing an Octree instead. In fact, each subdivision of Octree can be repre-
sented as a 2x2x2 cell Uniform Grid. The larger axis is defined by Bresenham’s algorithm as
the driving axis, determining the step size for the other (passive) axis. The key distinction
is that all the intersected cells must be visited by the ray traversal algorithm, while certain
cells from the passive axis can be skipped by the Bresenham’s. The simplest acceleration
structure is definitely a grid that regularly divides the space[15]. However, such a straight-
forward solution does not guarantee usefulness for scenes with an uneven distribution of
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Figure 7: Uniform Grid

primitives, since it is possible to assign a vast number of primitives into a single cell. Ama-
natides and Woo [4] have proposed a 3D-DDA extension. It’s the most common Uniform
Grid traversal found in literature because of its easy and successful implementation.

2.4 Kd-tree

It’s a hierarchical spatial subdivision acceleration structure. Here a spatial point lies in a
single node whereas an object might lie in multiple nodes.
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Figure 8: Kd-tree

Kd-tree, or k-dimensional tree, was initially introduced as a space partitioning data
structure by Bentley [8] for indexing points in k-dimensional space. Kd-tree [14]is a spe-
cial case of the binary space partitioning tree. The first established Kd-tree ray traverse
algorithm was implemented by Kaplan [26], later referred to as Sequential Traversal [21].
Inside the Kd-tree nodes, this traverse performs a cyclic top-down point search, before the
leaf containing the current search point is located. The point of interest is modified to be
within the next leaf node after the leaf traversal and the search algorithm goes back to the
root node. Many internal nodes are thus accessed repeatedly.

For Kd-tree, Jansen [25] suggested a recursive traversal algorithm. Since the recursive
calls manage the ordering of nodes to be accessed, his strategy does not visit a node more



than once. It is constructed along a given axis by recursively splitting the space into two
half-spaces. The cut location is chosen in such a way that there are approximately equal
numbers of objects in the two halves. Typically, as used for ray tracing, it is not the rec-
ommended technique to allocate two half-spaces to an equal number of primitives when
cutting a space. The number of primitives and the chance of a random ray entering any
half of space is a safer heuristic to consider. In reality, this is the fundamental concept of
Surface Area Heuristic (SAH) [18][36].

Via statistical analysis of ray-node intersection instances, Havran et al. [23] updated
Jansen’s traversal algorithm, minimizing traversal expense for more likely traversal situa-
tions. In addition, this traversal results in fewer numerical errors and therefore, fewer visual
artifacts. Havran et al. [22] defined how ropes are used to build and traverse a Kd-tree.
Ropes for Octrees and BSP-Trees are the neighbor-links between a leaf and its neighboring
nodes. These connections can then be used by a traversal algorithm to directly access neigh-
boring nodes, minimizing the number of internal nodes visited. This system is no longer
a tree in the strict sense since it has cyclic ties, a result of more than one possible path
from certain nodes to others. Havran [21] introduced an iterative version aiming efficiency,
later called Kd-Standard Traversal [13]. To store the child node placed most distantly, the
Kd-Standard traversal uses a stack. Later, after all the near-child nodes have been visited,
each stacked node is visited. The stack implies, thus, that the traversal takes place in the
same order as the recursive solution.

Via statistical analysis of ray-node intersection instances, Havran et al. [23] updated
Jansen’s traversal algorithm, minimizing traversal expense for more likely traversal situa-
tions. In addition, this traversal results in fewer numerical errors and therefore, fewer visual
artifacts. Havran et al. [22] defined how ropes are used to build and traverse a Kd-tree.
Ropes for Octrees and BSP-Trees are the neighbor-links between a leaf and its neighboring
nodes. These connections can then be used by a traversal algorithm to directly access neigh-
boring nodes, minimizing the number of internal nodes visited. This system is no longer
a tree in the strict sense since it has cyclic ties, a result of more than one possible path
from certain nodes to others. Havran [21] introduced an iterative version aiming efficiency,
later called Kd-Standard Traversal [13]. To store the child node placed most distantly, the
Kd-Standard traversal uses a stack. Later, after all the near-child nodes have been visited,
each stacked node is visited. The stack implies, thus, that the traversal takes place in the
same order as the recursive solution.

Some improvements to the Kd-Restart were suggested by Horn et al. [24]in order to
minimize the number of revisited nodes. Their Push-Down algorithm switches the node
of the root search to the last one where only one of its children is hit by the ray. As the
other child will never be visited, this internal node securely becomes the new root search
node. Then when a restart event is triggered, the search returns to this node instead of the
tree’s root node. They also described the algorithm of short-stack, like a hybridization of
the traversals of Kd-Standard and Kd-Restart. The short-stack uses a small circular array
representing a short stack instead of a wide, tree-depth-sized stack, with a length that takes
into account the hardware architecture’s resource constraints. If the stack is not empty, the
next node to be accessed is popped out of the stack on a short-stack traversal, equivalent
to the Kd-standard traversal, thereby preventing re-visiting any nodes. The restart case
is otherwise processed in the same manner as Kd-Restart. Finally, to the awareness of



the author, Horn’s implementation of GPU ray tracing is the first one to reach interactive
speeds.

A CUDA Kd-tree packet ray traversal based on the stackless algorithm of ropes, display-
ing interactive frame rates, was proposed by Popov et al.[42]. The stackless existence of a
rope traversal is worth noting, as the leaves’ neighbor-links are adequate to locate the next
tree branch to be traversed. A stackless algorithm on a GPU minimizes high latency mem-
ory bandwidth usage. For modern GPU Kd-tree implementations, a ropes-based traversal
algorithm is therefore an important reference. Kd-tree acceleration structure of Hapala and
Havran[20], leveraging ray coherence and algorithms built with unique hardware architec-
ture limitations such as memory latency and ray re-order consumption. Many strategies
have been developed [48]to enhance the coherence of parallel ray tracing activities. The
main concept is to group rays with similar traversal characteristics and then issue the mem-
ory requests in parallel.

Recently, Li et al. [33] also suggested a completely parallel construction algorithm. In
this work, a maximum degree of parallelism is allowed by starting from a Morton code [37]
based ordering of primitives and concurrently working on all leaf nodes or internal nodes
to form a hierarchy in a bottom-up manner. The construction algorithm based on binning
produces a small loss in the quality of the resulting Kd-trees [38]. Liu et al. [35] suggested a
FastTree hardware accelerator to fix this issue and also allow for an even higher construction
throughput. The completely parallel construction algorithm suggested by Li et al. [33] is
adopted by the FastTree hardware. The construction algorithm begins with a conceptually
complete binary tree, which corresponds to a standard space division into grid cells, and
then operates bottom-up on all leaf nodes at the same time. A benefit of the algorithm
is that a group of prefix-sum and radix sort units can be mapped to the main operations,
which Liu et al. [35] implement successfully into hardware.

2.5 BVH

It’s a hierarchical object subdivision acceleration structure. Here an object lies in a single
node whereas a spatial point might lie in multiple nodes.

Clark [10] first proposed the BVH. The BVH suggested by Rubin and Whitted[44] could
be the oldest AS for ray tracing, or at least some of its principles, such as close bounding vol-
umes for termination of early ray object intersection. A top-down BVH traversal algorithm
was proposed by Kay and Kajiya [29], in which the ray is evaluated against both bounding
volumes from the child nodes. The closest child node from the origin of the ray is accessed
while the farthest node is stored for a future traversal in a priority queue like a heap.
The authors did not, however, display any output gains than a simple stack. Shirley and
Morley [49] have actually warned about the detrimental effects of a priority queue overhead.

Arvo and Kirk’s [6] works on BVH construction usually pursue a bottom-up approach
by hierarchical triangle clustering. A common situation is where a static background and
several dynamic objects make up the scene. The concept of two-level BVHs was proposed
by Wald et al [52]. A top BVH is constructed over the individual objects and each object
has its BVH. More accurately, the top BVH includes references to individual objects with
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Figure 9: BVH

local transformations that help rigid body animations and instancing. A caveat of the two-
level BVH is that if the individual objects intersect, it could create a traversal overhead.
Benthin et al [7] recently addressed this issue.

Recent works are based on the binning system suggested by Wald [51]to increase the
speed of traversal. The main concept is to delegate primitives to frequently positioned bins
and then to find the better cut at the bins’ boundary. The right cut is measured in terms
of SAH costs here. This BVH construction algorithm powered by SAH consists of both a
parallel vertical and a horizontal point. The former stage deploys one thread starting from
the root to operate on the top-most subtree, while the latter stage uses several threads to
manage subtrees descending from the top subtree simultaneously. Available parallelism is
maximized through such an arrangement.

As separate rays can follow different execution routes, the traversal algorithm does not
work well with the single instruction, multiple data (SIMD) hardware of modern GPUs.
Merging the traversal and intersection test codes into a single kernel [1] and launching a
wide number of concurrent threads is an efficient practice for GPU-based ray tracers. BVH
with Spatial Splits (SBVH) was introduced by Stich et al. [47]. An algorithm that per-
mitted stackless traversals on BVHs was proposed by Laine [30]. The cost of the revisited
nodes on existing GPU architectures overshadows the gains of these algorithms. Laine in-
dicates, however, that this strategy may perhaps be useful in other and future architectures
by eliminating problems such as cache trashing.

Most BVH developers today focus on the bin-based algorithm in which the Moron code
is used as a clustering basis.[31][16]. Pantaleoni and Luebke [40] systematically enhanced
BVH construction efficiency by incorporating appropriate procedures to deal with the Mo-
ron code and taking advantage of the primitives’ inherent coherence.

An algorithm that permitted stackless traversals on BVHs was proposed by Hapala et
al. [19]. Aila et al. [2] recommended the use of persistent threads controlling a kernel to
significantly minimize the number of idle threads in a CUDA block in order to improve the
performance of ray traversals over the CUDA architecture. These persistent threads offer



major performance improvement and can be combined with any AS. It requires a processing
flow that is top-down. Primitives belonging to a node are split into a specified number of
bins along each axis at each stage and pick up the best direction and position for a cut.
Again, there are many metrics for determining a cut’s efficacy. SAH is generally considered
the best among these metrics, but a few recent works have managed to extract good parti-
tion efficiency to escape the comparatively costly heuristic and focus solely on Morton code.

The concept of reconstructing an existing low-quality BVH by operating simultaneously
on local tree structures was suggested by Karras and Aila [28]. The principle is capable
of massively parallel processing and has been proven to be incredibly effective. Compre-
hensive research on the precision requirement of ray tracing was carried out by Liktor and
Vaidyanathan [34] and suggested a reduced precision approach that can be incorporated
into current GPUs. Ylitie et al. [54] recently recommended that compressed 8-ary BVHs
be used to achieve the best efficiency.

3 Problem Statement

The sequential implementation of raytracing in CPU benefits from large main memory to
handle recursive calls in contrast to the parallel implementation of raytracing in GPU which
suffers from limited shared memory. This results in low quality rendered images. And fur-
thermore redundant ray-surface intersection restricts the raytracing implementation from
achieving real time rendering. This paper tries to implement a CUDA accelerated raytracer
which render high quality images in real time. Since raytracing imageries are mainly used
in entertainment and medical field, the quality of the rendered image and time taken to
render the image are crucial.

4 Proposed Solution
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Figure 10: CUDA enabled SIMD Parallel Architecture of raytracer
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One significant feature of raytracing algorithms is that it is possible to calculate the final
color of each pixel in the image independently of the others, providing a very natural way
to parallelize the execution of a raytracer by separating pixel color measurements between
threads. This is an ideal situation to deploy Single Instruction Multiple Data (SIMD) par-
allel architecture. The functional block diagram in Figure 10 shows the implemented SIMD
architecture for this project.

To address the stack overflow issue, recursive calls to the functions are converted to
iterative calls with explicitly defined stack depth. The c++ code snippets of recursive and
iterative calls for pixel colour calculation known as shading are given below.

color shade(const ray& r, const hittable& world, int depth) {
hit_record rec;
if (depth <= 0)
return color (0,0,0);
if (world.hit(r, 0.001, infinity , rec)) {
ray scattered;
color attenuation;
if (rec.mat_ptr—>scatter(r, rec, attenuation, scattered))
return attenuation * shade(scattered , world, depth-—1);
return color (0,0,0);

}

return color (0,0,0);

color shade(const ray& r, const hittable& world, int depth) {
ray cur.ray = rI;
vec3 cur_attenuation = vec3(0.0,0.0,0.0);
for(int 1 = 0; i < depth; i++) {
hit_record rec;
if (world. hit(cur_ray, 0.001, infinity , rec)) {
ray scattered;
color attenuation;
if (rec.mat_ptr—>scatter(cur.ray, rec, attenuation, scattered)) {
cur_attenuation x= attenuation;

cur_.ray = scattered ;
}
else
return color (0,0,0);
}
else

return cur_attenuation;

}

return cur_attenuation;

}

11



The iterative call carefully considers the different modes of shading to account for the
depth. Figure 11 shows the rendered images of different shading modes.
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Figure 11: Different Modes Shading in Raytracing

To address the redundant ray-surface intersection, this paper implements Binary Vol-
ume Hierarchy (BVH) acceleration structure. When each primitive is read by the raytracer,
a bounding volume is attached to it and compound to form the outer bounding volume.
In this way BVH is generated in the CUDA kernel. And when ray-surface intersection
happens, this binary volume hierarchy is traversed in a top-down order and identifies the
correct hit in log(n) times. A huge number of redundant ray-surface intersections is omitted
through the binary tree traversal.

5 Experimental Evaluation

The following results were obtained when comparing the sequential implementation in In-
tel i7-4710HQ 4 core CPU @ 2.5 GHz versus the parallel implementation in the NVIDIA
GeForce 840M GPU. Both the implementations were tested in the Ubuntu 18.04 Linux
Environment. For each comparison physical optical properties such as reflection, refraction,
defocus blur and motion blur were implemented and rendered into an HD image (resolution
1280x720) with 100 samples (to avoid anti-aliasing) & 50 depth (number of generated sec-
ondary rays per primary rays) per pixel which generated 1280x720x100 = 92,160,000 ( 92
million) primary rays and 92,160,000x50 = 4,608,000,000 ( 4.6 billion) secondary rays.

Reflection (100 samples): CPU 134.914s, GPU 54.5759s
Accelerated by x2.472

Figure 12: Reflection
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Refraction (100 samples): CPU 166.105s, GPU 56.465s
Accelerated by x2.942

Figure 13: Refraction

Defocus Blur (100 samples): CPU 169.553s, GPU 54.933s
Accelerated by x3.087

Figure 14: Defocus Blur

Motion Blur (10 samples): CPU 551.695s, GPU 25.790s
Accelerated by x21.391

Figure 15: Motion Blur
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6 Conclusion

While the rendered optical property increases in complexity as in the order of reflection,
refraction and defocus blur, the acceleration ratio of GPU vs CPU also increases in the
order of x2.472, x2.942, x3.087. This shows parallel implementation of raytracing algorithm
using BVH acceleration structure is better suited to achieve the interactive speeds needed
for the real time rendering. In addition, when the rendered number of objects in the scene
increases, the acceleration ratio of GPU vs CPU also increases from around x3 to x21. This
shows again the implemented raytracing engine gives a cutting-edge advantage for a scene
with large number of objects.

This raytracing rendering performance is measured in the author’s laptop NVIDIA
GeForce 840M GPU card, which came to the market in 2014 with only 384 CUDA cores.
Currently this is an outdated GPU when compared to the latest NVIDIA GeForce RTX
3090 GPU card which came to market in September 2020 with 10496 CUDA cores. If the
implemented parallel raytracing rendering engine is deployed in the commercially available
state of the art GPUs, it can render high quality images in real time needed for entertain-
ment and medical field.
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